Acquire strong basis in Python to use it efficiently
Pierre Augier (LEGI), Cyrille Bonamy (LEGI), Eric Maldonado (Irstea), Franck Thollard (ISTerre), Christophe Picard (LJK), Loïc Huder (ISTerre)
4 built-in containers: list, tuple, set and dict...
For more containers: see collections...
Lists are mutable ordered tables of inhomogeneous objects. They can be viewed as an array of references (nearly pointers) to objects.
# 2 equivalent ways to define an empty list
l0 = []
l1 = list()
assert l0 == l1
# not empty lists
l2 = ['a', 2]
l3 = list(range(3))
print(l2, l3, l2 + l3)
print(3 * l2)
['a', 2] [0, 1, 2] ['a', 2, 0, 1, 2] ['a', 2, 'a', 2, 'a', 2]
The itertools
module provide other ways of iterating over lists or set of lists (e.g. cartesian product, permutation, filter, ... ).
The builtin function dir
returns a list of name of the attributes. For a list, these attributes are python system attributes (with double-underscores) and 11 public methods:
print(dir(l3))
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
l3.append(10)
print(l3)
l3.reverse()
print(l3)
[0, 1, 2, 10] [10, 2, 1, 0]
# Built-in functions applied on lists
# return lower value
print(min(l3))
# return higher value
print(max(l3))
# return sorted list
print(sorted([5, 2, 10, 0]))
0 10 [0, 2, 5, 10]
# "pasting" two lists can be done using zip
l1 = [1, 2, 3]
s = 'abc'
print(list(zip(l1, s)))
print(list(zip('abc', 'defg')))
[(1, 'a'), (2, 'b'), (3, 'c')] [('a', 'd'), ('b', 'e'), ('c', 'f')]
list
: list comprehension¶They are iterable so they are often used to make loops. We have already seen how to use the keyword for
. For example to build a new list (side note: x**2
computes x^2
):
l0 = [1, 4, 10]
l1 = []
for number in l0:
l1.append(number**2)
print(l1)
[1, 16, 100]
There is a more readable (and slightly more efficient) method to do such things, the "list comprehension":
l1 = [number**2 for number in l0]
print(l1)
[1, 16, 100]
# list comprehension with a condition
[s for s in ['a', 'bbb', 'e'] if len(s) == 1]
['a', 'e']
# lists comprehensions can be cascaded
[(x,y) for x in [1,2] for y in ['a','b'] ]
[(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b')]
Write a function extract_patterns(text, n=3)
extracting the list of patterns of size n=3
from a long string (e.g. if text = "basically"
, patterns would be the list ['bas', 'asi', 'sic', ..., 'lly']
). Use list comprehension, range, slicing. Use a sliding window.
You can apply your function to a long "ipsum lorem" string (ask to your favorite web search engine).
text = "basically"
def extract_patterns(text, n=3):
pat = [text[i:i+n] for i in range(len(text)-n+1)]
return pat
print("patterns=", extract_patterns(text))
print("patterns=", extract_patterns(text, n=5))
patterns= ['bas', 'asi', 'sic', 'ica', 'cal', 'all', 'lly'] patterns= ['basic', 'asica', 'sical', 'icall', 'cally']
tuple
: immutable sequence¶Tuples are very similar to lists but they are immutable (they can not be modified).
# 2 equivalent notations to define an empty tuple (not very useful...)
t0 = ()
t1 = tuple()
assert t0 == t1
# not empty tuple
t2 = (1, 2, 'a') # with the parenthesis
t2 = 1, 2, 'a' # it also works without parenthesis
t3 = tuple(l3) # from a list
# tuples only have 2 public methods (with a list comprehension)
[name for name in dir(t3) if not name.startswith('__')]
['count', 'index']
# assigment of multiple variables in 1 line
a, b = 1, 2
print(a, b)
# exchange of values
b, a = a, b
print(a, b)
1 2 2 1
tuple
: immutable sequence¶Tuples are used a lot with the keyword return
in functions:
def myfunc():
return 1, 2, 3
t = myfunc()
print(type(t), t)
# Directly unpacking the tuple
a, b, c = myfunc()
print(a, b, c)
<class 'tuple'> (1, 2, 3) 1 2 3
s0 = set()
{1, 1, 1, 3}
{1, 3}
set([1, 1, 1, 3])
{1, 3}
s1 = {1, 2}
s2 = {2, 3}
print(s1.intersection(s2))
print(s1.union(s2))
{2} {1, 2, 3}
set
: lookup¶Hashtable lookup (for example 1 in s1
) is algorithmically efficient (complexity O(1)), i.e. theoretically faster than a look up in a list or a tuple (complexity O(size iterable)).
print(1 in s1, 1 in s2)
True False
from random import shuffle, randint
n = 20
i = randint(0, n-1)
print('integer remove from the list:', i)
l = list(range(n))
l.remove(i)
shuffle(l)
print('shuffled list: ', l)
integer remove from the list: 3 shuffled list: [4, 2, 5, 16, 15, 6, 9, 18, 8, 7, 13, 11, 17, 14, 12, 0, 19, 1, 10]
full_set = set(range(n))
changed_set = set(l)
ns = full_set - changed_set
ns.pop()
3
line 3: one traversal O(n), with one lookup at each time (O(1) -> O(n)
-> Complixity of the whole algorithm : O(n)
dict
: unordered set of key: value pairs¶The dictionary (dict
) is a very important data structure in Python. All namespaces are (nearly) dictionaries and "Namespaces are one honking great idea -- let's do more of those!" (The zen of Python).
A dict is a hashtable (a set) + associated values.
d = {}
d['b'] = 2
d['a'] = 1
print(d)
{'b': 2, 'a': 1}
d = {'a': 1, 'b': 2, 0: False, 1: True}
print(d)
{'a': 1, 'b': 2, 0: False, 1: True}
dict
and list
¶You can first think about dict
as a super list
which can be indexed with other objects than integers (and in particular with str
).
l = ["value0", "value1"]
l.append("value2")
print(l)
['value0', 'value1', 'value2']
l[1]
'value1'
d = {"key0": "value0", "key1": "value1"}
d["key2"] = "value2"
print(d)
{'key0': 'value0', 'key1': 'value1', 'key2': 'value2'}
d["key1"]
'value1'
But warning, dict
are not ordered (since they are based on a hashtable)!
dict
: public methods¶# dict have 11 public methods (with a list comprehension)
[name for name in dir(d) if not name.startswith('__')]
['clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values']
dict
: different ways to loops over a dictionary¶# loop with items
for key, value in d.items():
if isinstance(key, str):
print(key, value)
key0 value0 key1 value1 key2 value2
# loop with values
for value in d.values():
print(value)
value0 value1 value2
# loop with keys
for key in d.keys():
print(key)
key0 key1 key2
# dict comprehension (here for the "inversion" of the dictionary)
print(d)
d1 = {v: k for k, v in d.items()}
{'key0': 'value0', 'key1': 'value1', 'key2': 'value2'}
Write a function that returns a dictionary containing the number of occurrences of letters in a text.
text = 'abbbcc'
def count_elem(sequence):
d = {}
for letter in sequence:
if letter not in d:
d[letter] = 1
else:
d[letter] += 1
return d
print("text=", text, "counts=", count_elem(text))
text= Las Vegas Overlook Loop is a 6.3 mile loop trail located near Las Vegas counts= {'L': 3, 'a': 8, 's': 5, ' ': 13, 'V': 2, 'e': 6, 'g': 2, 'O': 1, 'v': 1, 'r': 3, 'l': 5, 'o': 7, 'k': 1, 'p': 2, 'i': 3, '6': 1, '.': 1, '3': 1, 'm': 1, 't': 2, 'c': 1, 'd': 1, 'n': 1}
We will reuse our function extract_patterns
.
def build_count_base(t):
d = {}
for s in t:
if s in d:
d[s] += 1
else:
d[s] = 1
return d
def build_count_set(t):
d = {k:0 for k in set(t)}
for s in t:
d[s] += 1
return d
def build_count_count(t):
d = {k:t.count(k) for k in set(t)}
return d
def build_count_excpt(t):
d = {}
for s in t:
try:
d[s] += 1
except:
d[s] = 1
return d
import collections
def build_count_counter(t):
return collections.Counter(t)
def build_count_defaultdict(t):
d = collections.defaultdict(int)
for k in s:
d[k] += 1
return d
s = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam tristique at velit in varius. Cras ut ultricies orci. Fusce vel consequat ante, vitae luctus tortor. Sed condimentum faucibus enim, sit amet pulvinar ligula feugiat ac. Sed interdum id risus id rhoncus. Nullam nisi justo, ultrices eu est nec, hendrerit maximus lorem. Nam urna eros, accumsan nec magna eu, elementum semper diam. Nulla tempus, nibh id elementum dapibus, ex diam lacinia est, sit amet suscipit nulla nibh eu sapien. Aliquam orci enim, malesuada in facilisis vitae, pharetra sit amet mi. Pellentesque mi tortor, sagittis quis odio quis, fermentum faucibus ex. Aenean sagittis nisl orci. Maecenas tristique velit sed leo facilisis porttitor. "
s = s*10000
len(s)
print(f"len(s) = {len(s)}, nbkeys {len(set(s))} base, count, count_count, except, colection.counter")
%timeit build_count_base(s)
%timeit build_count_set(s)
%timeit build_count_count(s)
%timeit build_count_excpt(s)
%timeit build_count_counter(s)
%timeit build_count_defaultdict(s)
print("with split")
s2 = s.split()
print(f"len(s) = {len(s2)}, nbkeys {len(set(s2))} base, count, count_count, except, colection.counter")
%timeit build_count_base(s2)
%timeit build_count_set(s2)
%timeit build_count_count(s2)
%timeit build_count_excpt(s2)
%timeit build_count_counter(s2)
%timeit build_count_defaultdict(s2)
len(s) = 7160000, nbkeys 33 base, count, count_count, except, colection.counter 1 loop, best of 5: 550 ms per loop 1 loop, best of 5: 495 ms per loop 10 loops, best of 5: 146 ms per loop 1 loop, best of 5: 488 ms per loop 1 loop, best of 5: 265 ms per loop 1 loop, best of 5: 450 ms per loop with split len(s) = 1100000, nbkeys 90 base, count, count_count, except, colection.counter 10 loops, best of 5: 123 ms per loop 10 loops, best of 5: 113 ms per loop 1 loop, best of 5: 992 ms per loop 10 loops, best of 5: 101 ms per loop 10 loops, best of 5: 62.3 ms per loop 1 loop, best of 5: 449 ms per loop
text="Las Vegas Overlook Loop is a 6.3 mile loop trail located near Las Vegas"
def extract_patterns(text, n=3):
"extracts the patterns of size n from text and return it"
pat = [text[i:i+n] for i in range(len(text)-n+1)]
return pat
def guess(prefix, count):
"complete the prefix with the most probable pattern (according to count)"
# get all the pattern in keys of count that starts with prefix
# compat_prefix = DIY
# find among the compatible prefixes the one wich score best according to count
best_prefix = "?"
return best_prefix
patterns = extract_patterns(text)
print("patterns = ", patterns)
patterns_count = count_elem(patterns)
print("patterns_counts = ", patterns_count)
print("guess for oo = ", guess("oo", patterns_count))
print("guess for eg = ", guess("eg", patterns_count))
patterns = ['Las', 'as ', 's V', ' Ve', 'Veg', 'ega', 'gas', 'as ', 's O', ' Ov', 'Ove', 'ver', 'erl', 'rlo', 'loo', 'ook', 'ok ', 'k L', ' Lo', 'Loo', 'oop', 'op ', 'p i', ' is', 'is ', 's a', ' a ', 'a 6', ' 6.', '6.3', '.3 ', '3 m', ' mi', 'mil', 'ile', 'le ', 'e l', ' lo', 'loo', 'oop', 'op ', 'p t', ' tr', 'tra', 'rai', 'ail', 'il ', 'l l', ' lo', 'loc', 'oca', 'cat', 'ate', 'ted', 'ed ', 'd n', ' ne', 'nea', 'ear', 'ar ', 'r L', ' La', 'Las', 'as ', 's V', ' Ve', 'Veg', 'ega', 'gas'] patterns_counts = {'Las': 2, 'as ': 3, 's V': 2, ' Ve': 2, 'Veg': 2, 'ega': 2, 'gas': 2, 's O': 1, ' Ov': 1, 'Ove': 1, 'ver': 1, 'erl': 1, 'rlo': 1, 'loo': 2, 'ook': 1, 'ok ': 1, 'k L': 1, ' Lo': 1, 'Loo': 1, 'oop': 2, 'op ': 2, 'p i': 1, ' is': 1, 'is ': 1, 's a': 1, ' a ': 1, 'a 6': 1, ' 6.': 1, '6.3': 1, '.3 ': 1, '3 m': 1, ' mi': 1, 'mil': 1, 'ile': 1, 'le ': 1, 'e l': 1, ' lo': 2, 'p t': 1, ' tr': 1, 'tra': 1, 'rai': 1, 'ail': 1, 'il ': 1, 'l l': 1, 'loc': 1, 'oca': 1, 'cat': 1, 'ate': 1, 'ted': 1, 'ed ': 1, 'd n': 1, ' ne': 1, 'nea': 1, 'ear': 1, 'ar ': 1, 'r L': 1, ' La': 1} guess for oo = ? guess for eg = ?
text="Las Vegas Overlook Loop is a 6.3 mile loop trail located near Las Vegas"
def extract_patterns(text, n=3):
pat = [text[i:i+n] for i in range(len(text)-n+1)]
return pat
def guess(prefix, count):
"complete the prefix with the most probable pattern (according to count)"
# get all the pattern in keys of count that starts with prefix
compatibles_prefixes = [x for x in count.keys() if x.startswith(prefix)]
if len(compatibles_prefixes) == 0:
return None
best_prefix = compatibles_prefixes[0]
best_score = count[best_prefix]
for pref in compatibles_prefixes[1:]:
if best_score < count[best_prefix]:
best_score = count[pref]
best_prefix = pref
return best_prefix
patterns = extract_patterns(text)
print("patterns = ", patterns)
patterns_count = count_elem(patterns)
print("patterns_counts = ", patterns_count)
print("guess for oo = ", guess("oo", patterns_count))
print("guess for eg = ", guess("eg", patterns_count))
patterns = ['Las', 'as ', 's V', ' Ve', 'Veg', 'ega', 'gas', 'as ', 's O', ' Ov', 'Ove', 'ver', 'erl', 'rlo', 'loo', 'ook', 'ok ', 'k L', ' Lo', 'Loo', 'oop', 'op ', 'p i', ' is', 'is ', 's a', ' a ', 'a 6', ' 6.', '6.3', '.3 ', '3 m', ' mi', 'mil', 'ile', 'le ', 'e l', ' lo', 'loo', 'oop', 'op ', 'p t', ' tr', 'tra', 'rai', 'ail', 'il ', 'l l', ' lo', 'loc', 'oca', 'cat', 'ate', 'ted', 'ed ', 'd n', ' ne', 'nea', 'ear', 'ar ', 'r L', ' La', 'Las', 'as ', 's V', ' Ve', 'Veg', 'ega', 'gas'] patterns_counts = {'Las': 2, 'as ': 3, 's V': 2, ' Ve': 2, 'Veg': 2, 'ega': 2, 'gas': 2, 's O': 1, ' Ov': 1, 'Ove': 1, 'ver': 1, 'erl': 1, 'rlo': 1, 'loo': 2, 'ook': 1, 'ok ': 1, 'k L': 1, ' Lo': 1, 'Loo': 1, 'oop': 2, 'op ': 2, 'p i': 1, ' is': 1, 'is ': 1, 's a': 1, ' a ': 1, 'a 6': 1, ' 6.': 1, '6.3': 1, '.3 ': 1, '3 m': 1, ' mi': 1, 'mil': 1, 'ile': 1, 'le ': 1, 'e l': 1, ' lo': 2, 'p t': 1, ' tr': 1, 'tra': 1, 'rai': 1, 'ail': 1, 'il ': 1, 'l l': 1, 'loc': 1, 'oca': 1, 'cat': 1, 'ate': 1, 'ted': 1, 'ed ': 1, 'd n': 1, ' ne': 1, 'nea': 1, 'ear': 1, 'ar ': 1, 'r L': 1, ' La': 1} guess for oo = ook guess for eg = ega
text="Las Vegas Overlook Loop is a 6.3 mile loop trail located near Las Vegas"
def extract_patterns(text, n=3):
pat = [text[i:i+n] for i in range(len(text)-n+1)]
return pat
def guess(prefix, count):
"complete the prefix with the most probable pattern (according to count)"
# get all the pattern in keys of count that starts with prefix
compat_prefix = [(x, count[x]) for x in count.keys() if x.startswith(prefix)]
ordered_compat_pref = sorted(compat_prefix, key=lambda x: x[1],
reverse=True)
return ordered_compat_pref
patterns = extract_patterns(text)
print("patterns = ", patterns)
patterns_count = count_elem(patterns)
print("patterns_counts = ", patterns_count)
print("guess for oo = ", guess("oo", patterns_count))
print("guess for eg = ", guess("eg", patterns_count))
patterns = ['Las', 'as ', 's V', ' Ve', 'Veg', 'ega', 'gas', 'as ', 's O', ' Ov', 'Ove', 'ver', 'erl', 'rlo', 'loo', 'ook', 'ok ', 'k L', ' Lo', 'Loo', 'oop', 'op ', 'p i', ' is', 'is ', 's a', ' a ', 'a 6', ' 6.', '6.3', '.3 ', '3 m', ' mi', 'mil', 'ile', 'le ', 'e l', ' lo', 'loo', 'oop', 'op ', 'p t', ' tr', 'tra', 'rai', 'ail', 'il ', 'l l', ' lo', 'loc', 'oca', 'cat', 'ate', 'ted', 'ed ', 'd n', ' ne', 'nea', 'ear', 'ar ', 'r L', ' La', 'Las', 'as ', 's V', ' Ve', 'Veg', 'ega', 'gas'] patterns_counts = {'Las': 2, 'as ': 3, 's V': 2, ' Ve': 2, 'Veg': 2, 'ega': 2, 'gas': 2, 's O': 1, ' Ov': 1, 'Ove': 1, 'ver': 1, 'erl': 1, 'rlo': 1, 'loo': 2, 'ook': 1, 'ok ': 1, 'k L': 1, ' Lo': 1, 'Loo': 1, 'oop': 2, 'op ': 2, 'p i': 1, ' is': 1, 'is ': 1, 's a': 1, ' a ': 1, 'a 6': 1, ' 6.': 1, '6.3': 1, '.3 ': 1, '3 m': 1, ' mi': 1, 'mil': 1, 'ile': 1, 'le ': 1, 'e l': 1, ' lo': 2, 'p t': 1, ' tr': 1, 'tra': 1, 'rai': 1, 'ail': 1, 'il ': 1, 'l l': 1, 'loc': 1, 'oca': 1, 'cat': 1, 'ate': 1, 'ted': 1, 'ed ': 1, 'd n': 1, ' ne': 1, 'nea': 1, 'ear': 1, 'ar ': 1, 'r L': 1, ' La': 1} guess for oo = [('oop', 2), ('ook', 1)] guess for eg = [('ega', 2)]